
STE Pretest 4.1

- 1. On earth gravitational acceleration is 9.8 m/s². On Neptune it is 11.2 m/s².
 - a) Find the mass(in kg) and weight(in N) of a 250 g can of mango juice on earth.
 - b) Find the mass(in kg) and weight(in N) of a 250 g can of mango juice on Neptune.
- a) Earth: mass = 0.250 kgWeight = mg = 0.250*9.8 = 2.45 N
- b) Neptune mass = 0.250 kgWeight = mg = 0.250*11.2 = 2.8 N
- 2. Find the net force acting on a box if it's being pulled on by a boy with a 29N force and in the opposite direction by another boy exerting 33 N.

$33 \text{ N} - 29 \text{ N} = \frac{4 \text{ N}}{4 \text{ N}}$ in the direction of the 33N boy.

- 3. At takeoff, the combined actions of engines and wings on a plane produce a force of 90,000 N at an angle of 60° above the horizontal. The plane rises at a constant velocity in the vertical direction while continuing to accelerate in the horizontal direction.
 - a. Balance the weight with the vertical force to find the mass of the plane.
 - b. Use the horizontal force to find the horizontal acceleration.

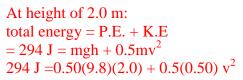
- A) F= mg = 90000sin60 This is balancing the weight perfectly, which is why the plane is no longer accelerating upward. (was not the case at takeoff!) m = 90000sin60/9.8 = 7953 kg
- B) $F_{horizontal} = 90\ 000*cos60$

F = ma

 $90\ 000*\cos 60 = ma$

 $90\ 000*\cos 60 = 7953\ a$

 $a = 90\ 000 \cdot \cos 60/7953 = 5.7\ m/s^2$


4. How much work is done to push a 22 kg mass up a 37° inclined plane for a distance of 3.0 m?

```
W = F_{effective} *d
= mgsin\theta*d
= 22(9.8)sin37 *3.0
= 389 J
```

5. A 0.50 kg mass is dropped from a height of 60.0 m. How fast will it be travelling when it hits a worker (has safety helmet) who is 2.0 m tall? Use the conservation of mechanical energy approach.


```
At the beginning : total energy = P.E. + K.E 
= mgh + 0(not moving) 
= 0.50(9.8)(60) = 294 J
```


v = 33.7 m/s (safety helmet won't save him, unless air resistance plays a major role.) Try solving this problem with a different mass; the answer won't change.